

Dual Band Bi-SectorTM Array

BSA33R-BW6B

- Six foot (1.8 m), multiband, Sixteen port Dual Band Bi-Sector[™] Antenna. Deploying two independent high performing pairs of CCI's Patented Asymmetrical 33° Shaped Beams covering 698-896 MHz and 1695-2180 MHz frequencies
- Eight wide high band ports covering 1695-2180 MHz and eight wide low band ports covering 698-896 MHz in a single antenna
- Full Spectrum Compliance for 698-896 MHz /1695-2180 MHz
- Implementing a new Patented Array Architecture, where gain has been significantly improved, while maintaining superior Co-Pol ISO between beams and superior El SLL performance
- Provides two independent pairs of LTE Optimized Asymmetric Shaped Beams for improved LTE data throughput by minimizing beam crossover, providing for an efficient use of valuable radio capacity and frequency spectrum
- LTE Optimized FBR, SPR and Boresight/Sector XPD Performance, essential for today's LTE Data Networks
- Exceeds minimum PIM performance requirements
- Equipped with new 4.3-10 connector, which is 40% smaller than traditional 7/16 DIN connector
- Equipped with Four Field Replaceable, integrated AISG 2.0 compliant Remote Electrical Tilt (RET)

Overview

This version of the CCI Dual Band Bi-SectorTM Multiband Array is a Sixteen port antenna, with eight wide high band ports covering 1695-2180 MHz and eight wide low band ports covering 698-896 MHz. The CCI Dual Band Bi-SectorTM array uses two independent pairs of CCI's Patented Asymmetric 33° Shaped Beams in the High Band frequencies and low band frequencies. The CCI Dual Band Bi-SectorTM Array provides the capability to deploy MIMO (over split beams) in the high band and 4×4 MIMO (over split beams) in the low band. The CCI Dual Band Bi-SectorTM Array utilizes four RET controllers, with a separate RET control in the Low Band and High Band for each LEFT and RIGHT pair of CCI's Patented Asymmetric 33° Shaped Beams.

The CCI Dual Band Bi-SectorTM Multiband Array, allow operators to reduce antenna count and replace existing 65° networks, while increasing cell site capacity and LTE data throughput by minimizing overlap between CCI's Patented Asymmetric 33° Shaped Beams. This design approach lowers interference between sectors. All of this is achieved through a single panel array, producing significant CAPEX and OPEX cost savings for the operator.

CCI antennas are designed and produced to ISO 9001 certification standards for reliability and quality in our state-of-the-art manufacturing facilities.

Applications

- Two Independent pairs of Dual (over split beams) 4x4 MIMO on High Band and Low Band
- Ready for Network Standardization on 4.3-10 connectors
- Ideal Antenna Solution for structurally constrained sites, where data throughput, capacity and limited spectrum is a concern
- With CCI's Dual Band Bi-SectorTM Antenna, wireless operators can connect
 multiple platforms to a single antenna, reducing tower load, lease expense,
 deployment time and installation cost

itennas

Dual Band Bi-SectorTM Array

BSA33R-BW6B

SPECIFICATIONS

Electrical

Ports		8 × Low Band Ports for 698-896 MHz	
Frequency Range	698-806 MHz	790-862 MHz	824-896 MHz
Gain	15.0 dBi	15.2 dBi	15.6 dBi
Gain (Average) ²	14.0 dBi	14.7 dBi	15.1 dBi
Azimuth Beamwidth (-3dB)	36°	34°	33°
Elevation Beamwidth (-3dB)	26.1°	23.8°	22.7°
Electrical Downtilt	2° to 16°	2° to 16°	2° to 16°
Elevation Sidelobes (1st Upper)	<-22 dB	<-22 dB	<-22 dB
Front-to-Back Ratio @180°	> 35 dB	> 35 dB	> 35 dB
Cross-Polar Discrimination at Peak	> 18 dB	> 22 dB	> 23 dB
Cross-Polar Discrimination at 3 dB (Avg)	> 9 dB	> 11 dB	> 11 dB
Cross-Polar Port-to-Port Isolation	> 25 dB	> 25 dB	> 25 dB
Co-Pol Isolation (Worse Case)	> 16* dB	> 17 dB	> 17 dB
Voltage Standing Wave Ratio (VSWR)	< 1.5:1	< 1.5:1	< 1.5:1
Passive Intermodulation (2×20W)	≤ -153 dBc	≤ -153 dBc	≤ -153 dBc
Input Power Continuous Wave (CW)	500 watts	500 watts	500 watts
Polarization	Dual Linear 45°	Dual Linear 45°	Dual Linear 45°
Input Impedance	50 ohms	50 ohms	50 ohms
Lightning Protection	DC Ground	DC Ground	DC Ground

Peak gain across sub-bands.
2Electrical specifications follow document "Recommendation on Base Station Antenna Standards" (BASTA) V11.1.

All specifications are subject to change without notice.

itennas

Dual Band Bi-SectorTM Array

BSA33R-BW6B

SPECIFICATIONS

Electrical

Ports		$8 \times \text{High Band Ports for 1695-2180 MHz}$	
Frequency Range	1695-1880 MHz	1850-1990 MHz	1920-2180 MHz
Gain	17.8 dBi	18.2 dBi	18.6 dBi
Gain (Average) ²	16.9 dBi	17.5 dBi	17.7 dBi
Azimuth Beamwidth (-3dB)	36°	33°	32°
Elevation Beamwidth (-3dB)	7.9°	7.0°	6.6°
Electrical Downtilt	2° to 12°	2° to 12°	2° to 12°
Elevation Sidelobes (1st Upper)	<-16 dB	<-16 dB	<-16 dB
Front-to-Back Ratio @180°	> 35 dB	> 35 dB	> 35 dB
Cross-Polar Discrimination at Peak	> 25 dB	> 22 dB	> 24 dB
Cross-Polar Discrimination at 3 dB (Avg)	> 15 dB	> 12 dB	> 12 dB
Cross-Polar Port-to-Port Isolation	> 25 dB	> 25 dB	> 25 dB
Co-Pol Isolation (Worse Case)	> 17 dB	> 17* dB	> 17* dB
Voltage Standing Wave Ratio (VSWR)	< 1.5:1	< 1.5:1	< 1.5:1
Passive Intermodulation (2×20W)	≤ -153 dBc	≤ -153 dBc	≤ -153 dBc
Input Power Continuous Wave (CW)	300 watts	300 watts	300 watts
Polarization	Dual Linear 45°	Dual Linear 45°	Dual Linear 45°
Input Impedance	50 ohms	50 ohms	50 ohms
Lightning Protection	DC Ground	DC Ground	DC Ground

M	lec	hanical	

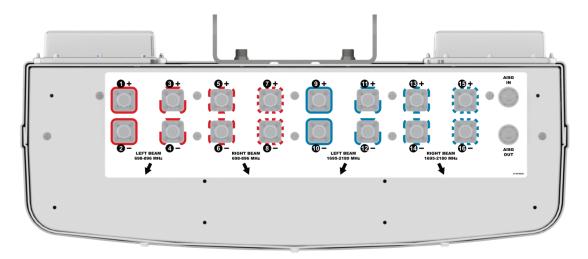
Dimensions (L×W×D)	71.0×28.5×9.7 in (1805×723×245 mm)
Survival Wind Speed	> 150 mph (> 241 kph)
Front Wind Load	431 lbs (1919 N) @ 100 mph (161 kph)
Side Wind Load	172 lbs (766 N) @ 100 mph (161 kph)
Equivalent Flat Plate Area	16.9 ft ² (1.6 m ²)
Weight *	125.2 lbs (56.8 kg)
Connector	16 × 4.3-10 female
Mounting Pole	3 to 5 in (7.5 to 12.7 cm)

^{*} Weight excludes mounting

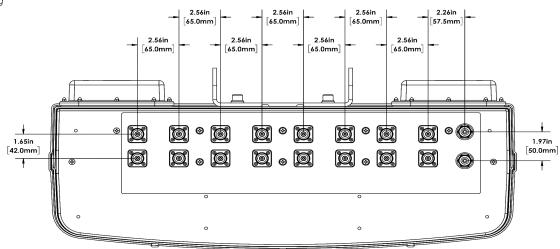
Peak gain across sub-bands.
2Electrical specifications follow document "Recommendation on Base Station Antenna Standards" (BASTA) V11.1.

^{*} in transmitter band

All specifications are subject to change without notice.


Dual Band Bi-SectorTM Array

BSA33R-BW6B


SPECIFICATIONS

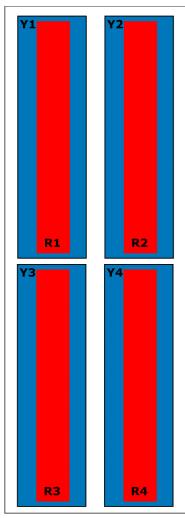
Mechanical

Bottom View

Connector Spacing

Dual Band Bi-SectorTM Array

BSA33R-BW6B


SPECIFICATIONS

Mechanical

RET to Element Configuration

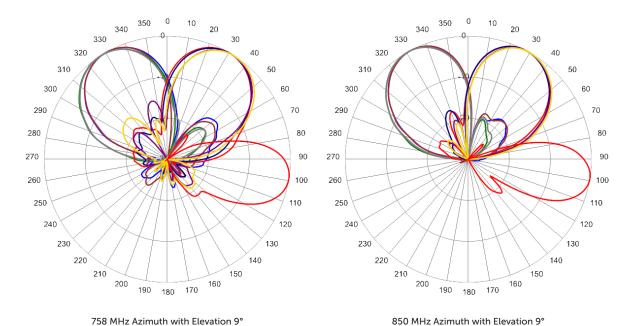
BSA33R-BW6BA Element and RET configuration (Type 17 Internal RET)

Top of antenna Viewed from rear

RET placement as view from rear of antenna

Top of antenna

Array	Ports	Freq (MHz)	Ports controlled by common RET	AISG RET UID
R1	1, 2	698-896	1, 2, 3, 4	
R3	3, 4	698-896	(Left Beams)	CIxxxxxxxMM.1
R2	5, 6	698-896	5, 6, 7, 8	
R4	7, 8	698-896	(Right Beams)	ClxxxxxxxMM.2
Y1	9, 10	1695-2180	9, 10, 11, 12	C1
Y2	11, 12	1695-2180	(Left Beams)	CIxxxxxxxMM.3
Y3	13, 14	1695-2180	13, 14, 15, 16	
Y4	15, 16	1695-2180	(Right Beams)	ClxxxxxxxMM.4

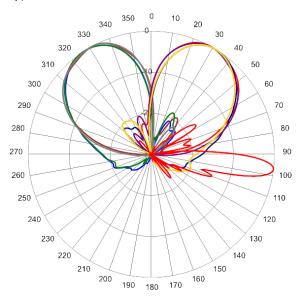

SPECIFICATIONS

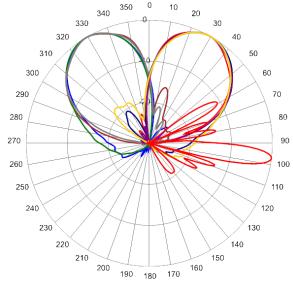
Dual Band Bi-SectorTM Array

BSA33R-BW6B

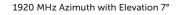
Typical Antenna Patterns

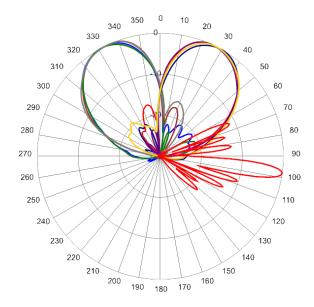
For detailed information on additional antenna patterns, contact customer support at support@cciproducts.com




SPECIFICATIONS

Dual Band Bi-SectorTM Array


BSA33R-BW6B


Typical Antenna Patterns

1780 MHz Azimuth with Elevation 7°

2180 MHz Azimuth with Elevation 7°

ORDERING

Dual Band Bi-SectorTM Array

BSA33R-BW6B

Parts & Accessories

BSA33R-BW6BA-K	Six foot (1.8 m) Bi-Sector TM Antenna Array with 4.3-10 female connectors,
	4 factory installed BSA-RET400 RET actuators (Type 17 internal) and
	MRK-01 mounting brackets

MBK-01 Mounting bracket kit (top and bottom) with 0° to 10° mechanical tilt

MBK-16 Mounting bracket kit (top and bottom) with fixed 0° mechanical tilt

BSA-RET400 Type 17 Internal Remote Electrical Tilt System (RET)

AISGC-M-F-10FT 10 Ft (3 m) Male/Female RRU to Antenna AISG cable

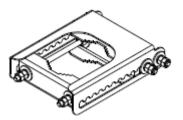
ACCESSORIES

Mounting Bracket Kit

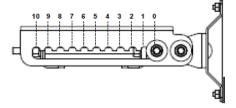
MBK-01

Mechanical

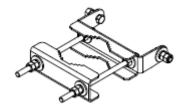
Weight 12.6 lbs (5.7 kg)


Hinge Pitch 47.25 in (1200 mm)

Mounting Pole Dimension 2 to 5 in (5 to 12 cm)


Fastener Size M12

Installation Torque 40 ft·lb (54 N·m)


Mechanical Tilt Adjustment 0° - 10°

MBK-01 Top Adjustable Bracket

MBK-01 Top Adjustable Bracket Side View

MBK-01 Bottom Fixed Bracket

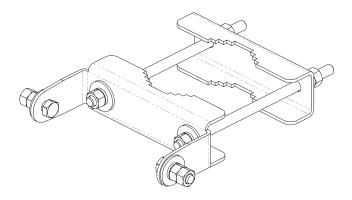
ACCESSORIES

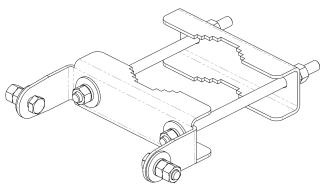
Mounting Bracket Kit

MBK-16

Mechanical

Weight 9.9 lbs (4.5 kg)


Hinge Pitch 47.25 in (1200 mm)


Mounting Pole Dimension 2 to 5 in (5 to 12 cm)

Fastener Size M12

Installation Torque 40 ft·lbs (54 N·m)

Mechanical Tilt 0°

MBK-16 Top and Bottom Bracket

ACCESSORIES

Internal Remote Electrical Tilt (iRET)

BSA-RET400

General Specifications

Part Number BSA-RET400
Protocols AISG 2.0
RET Type Type 17
Adjustment Cycles ±0.1°

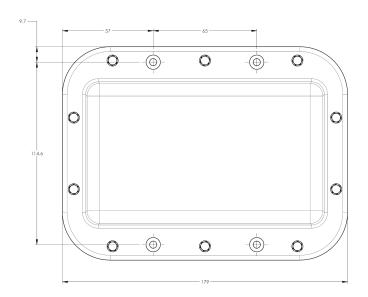
Electrical

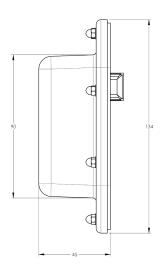
 $\begin{array}{c} {\sf Data\ Interface\ Signal\ } \underline{\sf DC} \\ {\sf Input\ Voltage\ } \underline{\sf 10-30\ Vdc} \end{array}$

Current Consumption Tilt 100 mA at V_{in}=24 (500 mA MAX)

Current Consumption Idle 10 mA at V_{in}=24

Temperature Range -40° C to 70° C


Mechanical


Dimensions (LxWxD) 7.0x5.3x1.8 in. (179x134x45 mm)

Housing ASA/ABS/Aluminum
Weight 1.3 lbs (0.6 kg)

ASA= Acrylic Styrene Acrylonitrile

ABS=Acrylonitrile Butadiene Styrene

itennas

ACCESSORIES

AISG Cable

AISGC-M-F-xFT

Electrical Specifications

Individual Cable Part Number AISGC-M-F-x(FT)

Cable style UL2464

Protocol AISG 1.1 and AISG 2.0

Maximum voltage 300 V

Rated current 5 A at 104° F (40° C)

Mechanical Specifications

Individual Cable Part Number AISGC-M-F-x(FT)

Cables per kit 1

Connectors 2 x 8 pin IEC 60130-9

Straight male/straight female

Tightening torque Hand tighten only ≈ 1.84 ft-lbs (2.5 Nm)

Construction Shielded (Tinned Copper Braid)

Braid coverage 85%

Jacket Material Matte Polyurethane (Black)

Conductors 1 twisted pair - 24 AWG

3 conductors - 19 AWG AWM style 2464

Cable Diameter 0.307 in (7.8 mm)

Length See order details

Minimum bend radius 3.15 in (80 mm)

Right Angle Male Right Angle Female Connector Orientation Connector Orientation 0.74 in (18.7 mm) 2.0 in (51 mm) Max 2.0 in (51 mm) Max 0.73 in (18.5 mm) .5 in (38 mm) Max 2.28 in (58 mm) Straight Male Straight Female AISG 2.0 Pir Connector Connector +12 V DC nominal (optional M16×0.75 No conductor 0.77 in No conducto 10 - 30 V DC

AISG-Male to AISG-Female Jumper Cable

ACCESSORIES

AISG Cable

AISGC-M-F-xFT

Environmental Specifications

Individual Cable Part Number AISGC-M-F-xFT

Temperature Range -40° to 80° C

Flammability UL 1581 VW-1

Ingress Protection IEC 60529:2001, IP67

STANDARDS & CERTIFICATIONS

Dual Band Bi-SectorTM Array

BSA33R-BW6B

Standards & Compliance

Safety EN 60950-1, UL 60950-1

Emission EN 55022

Immunity EN 55024

Environmental IEC 60068-2-1, IEC 60068-2-2, IEC 60068-2-5,

IEC 60068-2-6, IEC-60068-2-11, IEC 60068-2-14, IEC 60068-2-18, IEC 60068-2-27, IEC 60068-2-29, IEC 60068-02-30, IEC 60068-2-52, IEC 60068-2-64,

GR-63-CORE 4.3.1, EN 60529, IP 24

Certifications

Antenna Interface Standards Group (AISG), Federal Communication Commission (FCC) Part 15 Class B, CE, CSA US, ISO 9001

14